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ABSTRACT 

Recently, the notion of Differential  Dynamic Programming has 

been used to obtain new second-order a lgori thms for  solving non-linear 

optimal control  problems. 

the Principle  of Qptimality is applied in the neighborhood of a nominal, 

non-optimal, t ra jectory.  ) A novel feature  of these algorithms is that 

they pe rmi t  s t rong variations i n  the system trajectory.  

(Unlike conventional Dynamic Programming,  

In this paper,  Differential  Dynamic Programming is  used to 

develop a second-order algorithm for  solving discrete- t ime dynamic 

optimization problems with te rmina l  constraints .  

uti l izes s t rong variations and, as a resul t ,  has  cer ta in  advantages 

Over existing discrete- t ime methods.  

This algorithm a lso  

A non-linear computed example is presented,  and comparisons 

a r e  made with the resul ts  of other  r e s e a r c h e r s  who have solved this 

problem. 

The experience gained during the computation has  suggested 

Some extensions to a n  ear l ie r ,  previously published Differential Dynamic 

Programming algorithm for  continuous t ime problems. 

and their  implications a r e  discussed. 

These extensions, 



Notation 

Vectors a r e  columns; the sca la r  product of a and b, where 

n 
The derivative of a scalar  by a T T i s  a b o r  b a and i s  equal to q a i b i .  

1= 
vector is a row, and i s  written: 

The second derivative of a scalar  by vectors i s  a matrix:  

. a2v a2v 
aXlakl ax, akm 

a2v 
axnakm 

aZv 
aXnakl * * * 

where x is an  n-vector and k i s  a n  m-vector .  

Thus a second-order Taylor expansion will be written: 

V(x t ox, k t 6k) = V(x, k) t Vx6x + Vk6k + i 6 x T V  xx 6x 

T 1 T  
t 6x VxkGk t Z6k Vkk6k . 

'V' 



I, Introduction 

Jacobson [l], [2] has derived a second-order algorithm for solving 

continuous t ime optimal control problems using Differential Dynamic 

Programming.  This algorithm differs  f rom other second-order o r  

that i t  i s  derived using global variations in  control (strong variations 

in the t ra jectory) .  

In this paper a similar algorithm is developed for  solving discrete-  

t ime dynamic optimization problems with terminal  constraints. The 

new algorithm uees the notion of etrong variations and hence, as i n  

the case of the continuous t ime algorithm, has advantages over existing 

discrete- t ime algorithms [4], [ 5 ] ,  [ 9 ] ,  [14]. The algorithm can be used 

to  solve continuous t ime problems that a r e  approximated by difference 

equations. 

A non-linear numerical  example is presented and comparisons 

a r e  drawn with McReynolds [4], [5] and others [7], [8], who have solved 

this problem previously, using other methods. The experience gained 

in  the numerical computation has suggested extensions to the continuous 

algorithms' in [  13 and [2].  In particular,  the 'step-size adjustment' 

technique is generalized by the introduction of additional c r i te r ia  for 

ensuring that the ' t r ia l  new trajectory' ,  a t  each iteration, is sufficiently 

close to  the current nominal t ra jectory to guarantee a n  improvement in 

cost and/or terminal  e r r o r .  

- 1  - 



11. Derivation of the Discrete  Algorithm 

11. 1. Statement of the General Problem 

The problem to be solved is the following: if xo , .  - , xN a r e  vector 

quantities which satisfy 

= f(Xi, u. ,  t . )  i t1 1 1  
X 

and x i s  given, find the vectors  uo, . . . , u ~ - ~  to minimize the scalar 
0 

N- 1 

i= 0 

where the solution must  sat isfy the (vector)  equality constraint  

e(x,) = o - (3 )  

N and to , .  . . ' N  t a r e  known quantities, and a nominal control u0,. . U N - l  

is given. 

- 

Defining 
* 

(4) V(xo,k, to)  = V t kTe , 
I t the equivalent problem of finding uo, . . . , uNml to minimize V(x0, ko, to) 

and k to satisfy ( 3 )  is solved in  succeeding sections. 

of k, E, is assumed given. 

A nominal value 

11.2. Outline of the Solution 

The optimal re turn  function V sat isf ies  Bellman's I'Principle of 

Optimalitytt [3], which in  this case  is: 

V(x., k, t . )  = min [L(xi, ui, t i)  t V(xitl,  k , t i t l ) I  
U i  

1 1 
(5) 

for  i = 0 , .  . . , N-1.  

Regarded i n  t e r m s  of displacements 6xi, 6xitl, and 6k f rom the 

nominal t ra j e c t ory, 

It is assumed that a minimum exis ts .  

-2- 



and (5) becomes 

V(zi  t 6xi,E t 6k, ti) = min [L(x. 1 t 6x., 1 ui, ti) 
Ui  

The algorithm is derived from equation (6)  in the following sequence 

of steps : 
- -  - 

1. Expand both sides in Taylor se r ies  about x. k and xitl in 6xi, 
1) 

6k and 6xitl.  

2. Relate 6xi+l to 6";. 

3. Per fo rm the indicated minimization with respect  to u. in two 
1 

stages .  

A. 
>: 

Find ui which minimizes the right side of (6)  with 

6x. = 0 and 6k = 0. 

Expand about ui in  6u. with 6x. and 6k non-zero, and 

minimize with respect  to 6u.. 

a function of 6xi and 6k. 

1 * B. 
1 1 

This will give 6ui as 
1 

4. Equate coefficients of like powers of bxi and 6k to obtain 

i i difference equations in V x ,  V k ,  etc. 

It is  assumed that 6xi, 6xitl and 6k will be sufficiently smal l  

that all Taylor expansions can be terminated at second-order t e r m s .  

11. 3. Solution 

Following the prescr ipt ion of the previous section, the left side 

of ( 6 ) ,  when expanded in a Taylor se r ies ,  is, 

- 3 -  



(7) 
a - -  a - -  - 

V(xi t 6x.,E 1 t 6k, t . )  1 = V ( x  i’ k, ti) t V(xi, k, ti)6xi t - 8k V(xi, k, ti)6k 

- -  2 t - 1 6xT% V(xi, k, ti)bxi 

i a x  

- -  2 
t 6xTa V(xi, k, ti)6k i axak 

2 
6kT% V(xi, E, ti)6k t . . . 

t Z  ak 

The reader  should note that V(G.,E, ti) i s  the minimal value of the 
1 

re turn  function obtainable with initial conditions at  xi, ti, and with 

k = E. 
function calculated along the nominal t ra jectory,  start ing from ti. 

-- - 
It i s  not the same as  V(xi, k, t i) ,  the value of the re turn  

Symbolic ally , 

where x it19 * - PXN satisfy ( l ) ,  and x. 1 = x i ’  

However, 

N- 1 - 
-T - -- - - -  

( 9 )  V(xi,k, ti) = L(xj ,u j , t j )  t F(xN) t k e(x,) 
j = i  

- - 
where ui,.  . . 
x. 

i s  the nominal control sequence and thus, 
- - . . .-,. xN i s  the nominal t ra jectory (which sat isf ies  (1) with 

1 ’  - 
u = u ,  j = i , .  . . , N - 1 ) .  

j j  -- - 
Acknowledging the difference between V(xi, E, ti) and V(xi, k, ti),  

define 
- -  - -  -- - 

(10) a(xi, k; t i)  = V(xi, k, t i)  - V(xi, k, t i)  

-4- 



To simplify notation, let  

-- - 
V(xi, k, ti) = F1 
- -  

V(xi, k, ti) = Vi 

a(x. k , t . )  = a i 
- -  

1' 1 

a - -  i - V(xi, k, ti) = Vx , etc.  ax 
Then 

ai = vi - + (10') 

and applying (1 0) to (7), obtain 

V(xi t 6xi,E t 6k, t . )  = ai t v i  t Vi 6x. t Vi 6k t z6x i  1 T i  Vxx6xi 
1 x i  k (11) 

t 6xi T i  Vxk6k t ~ 6 k  1 T i  Vkk6k t . . . 
Similarly, expanding the quantity to be minimized in equation (6)  

t - - -  
about xi, k, xit l ,  

i t 1  T i t 1  t vit16x f Vp16k 6x. t a 1 L~ t L~ 6x. t - 6 x . ~ ~  x 1 2  1 x x  1 x i t 1  

t z 6 x  1 i t 1  T Vit16x xx i t 1  t 6xz1Vz16k  t 6kTVz16k t . . .  
i t 1  t ~ i t l  i t 1  where, as above, a = v  . 

Expression (12) is an  infinite s e r i e s  in  6x. 6x and 6k. But 

through 

1' i t 1  
it is c lear  that there is a relationship between 6x. and 6x 

equation (1). 

o r  6x 

1 i t 1  
This relationship may be used to eliminate either 6x 

i 

will be f rom (12), but to conform with equation ( l l ) ,  6x i t 1  i t 1  
removed. 

- - -  
= f(x., u., t. ) i t 1  1 1 1  

X 

L and its derivatives a r e  evaluated at G . ,  u.,  t 
yet to be determined. 

The control u. is 
1 1 i' 1 

- 5- 



- -  
Thus, 6xitl = f(xi, ui, ti) - f(xi, ui, ti) o r ,  

- 
= f(T. t 6x., u., t . )  - f(Ti, ui, ti) i t 1  1 1 1 1  

(1 3) 6 X  

In equation (13), u. is  perfectly general .  It w L l l  la ter  be fixed 
1 

by the minimization operation of equation (6) .  

1 Expanding (1 3) about xi, and defining 

I f i = f ( F ,  ui, ti) 

- -  I f = f(x. u t i)  
1' i' 

obtain 

(14) 6 X  - - (fi - 2 
I 
, i 

i t 1  

where the derivatives o f f  

Subs ti tuting ( 1 4) into 

t fi X 6Xi t ;6XTf:x6xi t . . . 

a r e  evaluated at (xi, ui, ti). 

(12), obtain 

i t l ( f i  - -* 1 ' -i T i t 1  i - 3) 
t v  X 

f l )  t $fl - f ) vxx (f Li ,it1 +tl  
(1 5) 

t [ V p l  t (f' * - -i f ) T Vxk]6k i t 1  

t oxi T fxVxk i i t16k 

t ~ 6 k  1 T Vkk i t l G k  
I 

' -i T i t 1  T 
1 T i vitlfi fi .itlfi (fl r' 16,. t . . . t p x i  [Lxx x xx x xx x - vxx xx 1 

I Recall that equation (5) has now been transformed to 
I 

l l r .  h. s. of equation (11) = min(expression(15))"  
ui 

(16) 

1 - 6 -  



As suggested ea r l i e r ,  the minimization in  (16) may be performed 

in  two stages.  
* 

. 1  
First u. is found, which minimizes (1 5) with 6xi = 0 and 6k = 0, 
* 
1 

i . e . ,  u. minimizes 

vitl(fi -i 1 i -i. T i t1 i I - f ) t Z ( f  - f ) vxx ( f  - f )  t .  . .  Li ,it1 qtl 
X 

(The t e r m s  not printed in (17)  a r e  of third and higher order  in  

(fi - ?), and thus a r e  assumed negligible. ) 

F o r  convenience, define 

Hi = H(x. u * -  , k, ti) = L i t Vx i t l f i  
1’ i 

In (18), and for the r e s t  of this paper,  all functions of ui a r e  
* 

evaluated at ui . 
Note that ,  ’ 

. ‘ d l  j 

i t lf i  
x x  Hi = Li t V 

X X 

etc. xx xx 
* 

Since (17) is a t  a minimum when evaluated a t  u. its first 
1’ 

derivative with respect  to  u must  be zero; i 

i T i t lf i  = Hi t (fi - f ) Vxx 
U 

In addition, the second derivative of (17) (to be defined as A )  must  
$< 

be positive definite at u. = ui ; 
1 

* I T i t l f i  , i fi vit lf i  (fi 
.. T 

- ? vxx uu A =  H uu u xx u 

(The third t e r m  in (20 )  does not appear in  the ‘weak variation’ algorithms 

of ~41, PI, DI, ~ 4 1 ) .  

- 7- 



* 9 

1 1  
Expanding (15) about ui , with u. = u. t 6ui, the following is 

obtained, using (19) and (20) .  

Li ,it1 yitl t Vit1(* - F )  t $ 1  1 - i T  f ) vxx i t 1  ( I  * - P )  
X 

(21)  

t [Hi t f' * T  V i t 1  (fl * - ii)]6xi 
x x xx 

* I T i t 1  t [ V r l  t (f' - f ) Vxk]6k 

e T  i t 1  t 6xT f' 
1 X. 'xk 6k 

I- 

+ 6uTfi V z l  6k 
1 u  

* 
I T i t 1  * T i + 'itlfi (fi - T 

r' ]sui 6xi [Hxu x xx u ) vxx xu 

1 T i fi . T  'itlfi (fi - -i T i t 1  i tz6xi [Hxx x xx x vxx f xx ]axi 

t Z6k 1 T Vkk i t16k 

1 T  t 26". 1 A6ui 

3 3 3 Terms  of order  (Gx.) , (Sui) , (6k) o r  grea te r  have been ignored 
1 

in (21).  t 
The second stage of the minimization is accomplished when (21) 

is minimized with respect  to 6u.. 
1 

Taking the first derivative of (21) with respect  to 6u. and setting 
1 

it to zero,  obtain 

It is assumed that 6x truncation. i' 1 
6u. and 6k a r e  smal l  enough to justify this 

-8 - 



where 
m 

* -i T i t 1  i ' . I  

4- (f' - f ) vxx f l  ux 
-1 i fi ,itl+ P, = - A  [H ux u xx x 

Equation (22 )  is  a l inear feedback perturbation control law. It 

is sufficient to consider 6u. to be l inear in 6x. and 6k because on 

substituting a n  expression of higher order  than (22)  into (21), t e r m s  of 

higher o rde r  than quadratic would appear.  

On substituting (22) into (21), the resul t  is 

Li ,it1 + t l  

1 1 

.ii-l($ - i f ) t$fl 1 ' - -i f ) T vxx i t 1  (3 * - Ti) (25)  X 

* i T i t 1  i t [Hi 4- ( f l  - f ) Vxx f ]6Xi 
X 

i .  ' .  

* i T i t 1  t [ V F 1  t (fl - f ) Vxk]6k 

+ z 6 x i  1 T [Hxx i fiTvitl x xx i x + (fi - -i )vxx itlfi xx - P ; r A P 1 I 6 X i  

i '  

Thus, expression (25) is equal to the r .  h. s .  of equation ( l l ) ,  by 

(16). 

equal. 

Expression (25) is  the minimum of (15) with respect  to u 

Therefore,  coefficients of like powers of 6xi and 6k must  be 

- 9 -  



Noting that 

i i t 1  +L' 
(26)  v = v  9 

equating (1 1 )  and (25)  produces the following difference equations, valid 

for i = 0 , .  . ., N-1. 

i i t 1  Hi i 1 i i T i t 1  * a = a  - H t Z ( f  - f ) Vxx (1 3) 
i T i t 1  i 

V i  = Hi X t (fi - f ) Vxx fx 

i i t 1  ' -i T i t 1  
k 

i e T  i t 1  T 

v = Vk t ( f l -  f ) Vxk 

Vxk = f: Vxk - 'P2 

T i fi vitlf i  - I itlfi 
(fi )vxx xx Vi = H 

xx xx x xx x 

The boundary conditions a r e  applied at i = N, and a r e  the same 

as in  [l]. They a r e  found by expanding 

- T 
V(xN t 6x N' k t 6k ' N  t ) = F(xN t 6xN) t (E t 6k) O ( x N  t Ox,) 

to second-order in a Taylor se r ies  in  6xN and 6k. 

last t ime step,  yN = V . 
(33)  a = O  

Because this is the 

N Thus, 

N 

and, f rom the expansion, 

(34)  

(35 )  

N (37)  Vkk = 0 

-10- 



vN = F (x,) t E T e  xx ( ~ ~ 1  xx xx 

Thus, i f  we ‘t integrate” equations (27) - (32)  f rom i = N-1 to 0 with 

equations (33)-(38) as boundary conditions, then equations (19) and (22)  show 

how to calculate 

formance index V(x k, to).  

a;< 

u. = u. f 6u. to get optimal improvement on pe r -  
1 1 1 

0’ 

These resul ts  a r e  only meaningful if the second-order truncations 

of the Taylor s e r i e s  above a r e  good approximations of the full expansions. 

6k, and 6u. must  be small .  There is no restr ic t ion 
Thus 6xi, 6xitl,  1 - *  - -  * -  -i on Au. = u. - u. except that fi - f = f(x. u i ,  ti) - f(xi, ui, ti) mus t  be 

1 1 1 1’ 

i t 1  sufficiently sma l l  to guarantee the smallness  of 6x 

111. Comparison with and Extensions of Jacobson’s Results 

111.1. Comparison and Discussion 

The case  in which the d iscre te  problem is a n  Euler discretization 

of a continuous problem is of interest .  In that case ,  
N 

f(xi, u. t . )  = x. f A t  f(xi, ui, ti) (39) 1’ 1 1 

and 

(40) 1’ i’ 
r 

L(xi,ui9ti) = L(x. u ti)At 

Clearly,  

‘ X  i t 1  i x(ti 4- At) - x(ti) X 

(41) 1 = l im A t  = f (Xi ,  u.,  1 1  t . )  
&t+O At L( t . )  = lim 

A t+O 

and 

N- 1 N- 1 

L(x. u t.)At = 
1’ i’ 1 c- 0 

(42) lim 2 L(xi, ui, ti) = l im 

N+oo N+W 
At40 i = o  At* i = o  

i f  the discretization is done with care .  

-11- 



It is  reasonable to expect that i f  the transformations (39) and 

(40) a r e  applied to the resul ts  of the previous section and the l imit  

is taken as A t + O ,  equations should be obtained which solve the analo- 

gous continuous problem. 

Jacobson [ l]  has  solved that problem, and the statement of the 

problem, as well as the solution a r e  reproduced below, in Appendix A 

Note that 

(47) 

i t 1  - Hi = Z A t  t Vx (xi t A t ? )  

where the same abbreviated notation as in the last  section is used. 

Thus 

(45)  Hi = (zi + Vx 

Then, according to (20) 

+ +tl- x. = *i H At 4- vx i+l- X. 
x 1  1 

(44) 
- 

2 "i i t 1 2  (Zi w i  i tl? 3 
A =  zi uu At t (At) [fuvxx - )vxx uu 

Define 

which will be writ ten 

EI Hi 
A =  H t A i A t  (46) uu 

for clari ty.  

F rom (23) and (45), 

Similarly, f rom (24), 

N - l U f i L v i t l  
u xk P = - A  2 

to (27)-(32), the following a r e  simply obtained. 

-12- 



(49) 
- 

m i  1 5 3 T i t 1  3 “i i t 1  - ai 

At = H - H t ? ; ( f  - f ) Vxx (f - f )At a - 

(“fi - =i T i t lyAt ) vxx x 
X - 

At X (50) 

i 
s i  T i t 1  vk = (’li - f ) Vxk - - 

(51) At 

Vitl - vi T 
xx = 2 yi vitl vitlT xx - 

xx x xx xx x (54) A t  

- 
i t l? (d Ni T it1”i T 

4- At[? x V xx x - vxx f l  xx 

Jacobson’s [ l ]  equations fo r  P,, P,, a, Vx, Vk, Vxk, Vkk, and 

V axe reproduced below in Appendix A. Inspection will reveal  

agreement  between those and (47)-(54) as At-0. 

xx 

It should be noted that although the d iscre te  f, L, and H a r e  

related to  their  respective continuous counterparts through (39), 

(40), and (43), the d iscre te  a, V, derivatives of V, P,, and P2 directly 

approximate the continuous quantities. 

- 

As At-0, the d iscre te  and 

continuous versions of the latter quantities approach one another.  

Equations (39) and (40) and the transformations that resulted 

from them were used to show the connection between the present  

discrete  equations and the ear l ie r  [ 13 continuous equations. However, 

cases  may exist  where (39) and (40) a r e  useful numerical  methods 

with which to solve a continuous problem.$ Then, (47)-(54) contain 

t Continuous-time problems which a r e  par t icular ly  sensitive to u may 
require  a large number of smal l  time s teps  when the algorithms of [l], 
[2] a r e  used. Then, since A t  is  small ,  sufficient integration accuracy 
may  be obtained from an  Euler scheme. See [ Z ,  page 171. 
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the full dependence on At, which involves t e r m s  of order  A t  and higher. 

It may be worth while to re ta in  high order  t e r m s  [14]. 

Also, (47)-(54) indicate that some of the arguments of the 

right sides a r e  to be evaluated at t ime i t l ,  and others  must  be 

evaluated at  t ime i. A simple Euler discretization of the continuous 

time algorithm [l], [2] would evaluate all arguments at time i t l .  

It may be possible to obtain more  useful versions of (47)-(54) 

by replacing (39) and (40), the Euler discretizations of f and L, by 

a more  sophisticated, accurate  scheme. 

111.2. Description of the Algorithm 

The discrete  algorithm is very s imilar  to the continuous 

algorithm [ l ,  section 4.81, and is  outlined in Flow Chart  11. 

The algorithm is a successive approximation process ,  and 

In the f i r s t  stage, k is kept each approximation has  two stages.  

constant, and optimization takes place with respect  to u without 

regard  to the value of 8. 

i' 

In the second, 6k is  calculated to reduce 

8 in absolute value. 

The f i rs t  stage proceeds as follows. Equation (1) is ttintegratedfl 

"-1' 
- 

Then using initial conditions x 

equations (27) ,  (28), and (32) a r e  integrated back from i = N, with 

and nominal control E 
0 0' 

. . . , u 

boundary conditions ( 3 3 ) '  (34), and (38). 
0 If a is not close to zero,  then, by definition ( l o ) ,  the nominal 

control is not close to optimal for the cur ren t  value of E. 

the t ra jectory (i. e . ,  to get c loser  to the optimal and reduce a ), (19) 

is solved for ui and (22)  is used to calculate u. = u. t 6ui, which is 

used as the new optimal control in (1). 

To improve 
0 

:k :;< 

1 1 

The cycle repeats .  If 

necessary (see below for the descriptions of the tes ts  to explain this 

-14- 



Obtain, from main algorithm, the time Neff 
when l a  (2; t) l  becomes greater than 7 , .  7 ,  
a small positive quantity. 

/Iv * C  satisfied? l d x ;  N I ) I  I s  criterion 

+ Denotes division integer f-y-. I S  Neff 1 HALT; 
OPTIMAL FOUND, 

Yes, Ni satisfactory - - 

Set C=0.5 n 

JNo 
IS NI = Neff - 1  or is Neff = l ?  

I Apply u =  G on the interval [l, N,] and u =u* + p8X on 

Proceed to next 
iteration of main 
algorithm 

I the interval [NI, N]. Calculate the cost V(xo;l) and 

I hence the improvement b / = v ( x 0 ;  1 ) -v (x0 ;1)  

1 

dl Set c=O.O 
ATTA I NAB L E. 

FLOWCHART I :  "STEP SIZE ADJUSTMENT METHOD': 



Using a nominal control TI ( t i ) ;  t s  [to, t f ]  
nominal F ( t i )  trajectory. Calculate the nominal 
cost (ZO; to). Store the R and il trajectories 
and T. 

V 

Using boundary cond itions 33,34,38 integrate equa- 
tions 2'728, 3q backwards from tf to to, all the while 
minimizing H w.r.t.u to obtain UT and storing 
u*(ti), @,(ti), &(t i). Note also the time Neff 
when l a (  Ri; becomes greater than 7 .T) 
chosen from n u mer i cal sta bil i t  y considerat ions. 

1 

Apply the "step size adjustment method" (s.a.m.1 
to obtain a new improved trajectory. If the cur- 
rent nominal control is optimal or i f  an improved 
control cannot be found, then s.a.m. halts the 
computation. 

I 

If Neff=l, integrate 
W), (31) backwards 
from (36),(37). Cal- 
culate 8k from (59). 
Integrate state 

, equations ( 1 ), 

+ 
If an improved trajectory is  obtained, replace 
the old nominal 'xi,Giand by these new values. 

I 

FLOW CHART II: THE OVERALL COMPUTATIONAL PROCEDURE 



necessity) the step-size adjustment routine is  called. (This routine 

will not be discussed here ,  but, for completeness, it appears  

schematically in Flow Chart  I. It is described in  the references,  [l], 

and [2, section 41. ) 

If ao is close to zero,  and 8 is  a lso close to zero,  the problem 

is solved. 

If ao is close to zero  but 8 is  not, the algorithm enters  its 

second stage: k is  modified (according to the formula of the next 

section) to reduce each component of 8 in  absolute value. 

III. 3.  Determination of 6k 

6k is found in  the following manner.  Jacobson has  shown 

[l ,  section 4 . 6 1  that, to  second-order, the proper  value of 6k is  

that which maximizes V ( x  k t 6k, to) .+ But 
- 

0' 
m 

(55)  V(xo,E t 6k,t ) = ao t To t Vk O 1  6k t z 6 k  1 T o  Vkk6k 
0 

Therefore  the proper value of 6k satisfies 
rp I V z  t Vkk6k 0 = 0 

- 1  T T 6k = -Vo Vo kk k 
- 1  

(Jacobson shows that Vo is negative definite? so  that Vzk exists.' ) kk 
Since, in  the present algorithm, 6k is only evaluated when 

fi - ? = 0 (because a = 0), Vk = 8 (x,) f rom equations (29)  and (35). 

Then, ( 5 7 )  becomes 

O o T -  

McReynolds [4] and Bryson and Ho [ 131 have obtained similar 
conditions. 

Provided that the l inearised system is controllable, and eT has 
full rank. 

- 1 7 -  
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Following [l], k i s  modified according to (58); (1)  is then 
:: 

integrated forward with u = u. t 6ui chosen according to (19) and i 1 .. 
(22 ) .  

(component-wise) than e(; ), choose 

If the resultant value of e(x ) is  not smal le r  i n  absolute value N 

N 
- 1  

(59) 

0 where 0 < E < 1, and reduce E until e(x ) i s  reduced and a is near  N 

zero.  

III. 4. New Cr i te r ia  

It is essential  that 6xi and 6k be kept small. This ensures  that 

6u. will be small, and thus the second-order expansions of (6)  will 

remain valid. If 6x. and 6k are  found to be too large,  i. e . ,  if they 

invalidate the truncations of the Taylor s e r i e s  in  section 11, means 

for  reducing them a r e  presented in  Jacobson's algorithms [ l ,  section 

4.2.11, [ l ,  section 4.81, [2, section 41. 

1 

1 

These techniques apply to 

the discrete  problem as well as to the continuous. 

There a r e  c r i te r ia  i n  [ l ]  and [2] for deciding whether to reduce 

6xi and 6k o r  not. 

end point problems is  described below (Test  1). 

However, an  addition cri terion, required for  fixed 

A criterion, alternative to that in  [l],  [2] is a lso given. This 

cr i ter ion (Test  2)  is useful i n  cases  where it is desirable to keep 

t the h e w  trajectory '  i n  the immediate neighborhood of the nominal. 

Test  1 

Although 6k is chosen according to (59) (where E i s  such that 

e(x ) i s  reduced), it m a y  lie outside the range of validity of the expan- N 

sion (1 1) (when truncated a t  second-order t e rms) .  

Such may be the case  when the t ra jectory must  be prevented from 
"jurnpingl1 to another near  by local minimum. 
a n  example is  discussed in  detail where this was found to be necessary.  

In the following section, 
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At i = 0, (11) coincides with (55). Since both s ides  of (55) may be 

independently measured  (i. e . ,  choose 6k and evaluate the left-hand side. 

Then integrate (1) as described above and evaluate the right-hand side, 

V(xo ,E t 6k, to) ), (55) may be considered to be a tes t  of 6k. 

If 6k is  given by ( 5 9 ) ,  then (55) predicts  that 

If (60) does not predict  the change in V to within a given tolerance,  

then E should be reduced until it does. 

Test  2 

F r o m  (4) and ( 9 ) ,  

N 
Vi = 2 LJ t F(xN) t k T @(xN) 

N 

Thus 

N 
6vi = v - $ = 2 6Lj + (F(xN) - F(xN)) . (k T Q(x,) - -T k 

j= i  

But, f rom (11), 

6Vi = ai t Vi 6x. t Vi 6k t 6:; Vi 6xi t 6x. T i  Vxk6k t Z6k 1 T i  Vkk6k x i  k 2 1 xx 1 

Since (63) and (64) must  be equal, their  proximity is  a tes t  on the 

s ize  of 6xi and 6k. 

(64) is a n  approximation dependent on 6x. and 6k. 

This is  because (63) is a n  exact expression, and 

1 

In order  to use (63) and (64) as a step-by-step tes t  of 6x. their  

which is 

1’ 

form should be modified. 

not yet available a t  step i of the forward integration. 

This is  because (63) involves x ” 
The modification 
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is a simple one: f rom (63), 

Thus, 

i- 1 - 
6vi - 6v0 = ) 6Lj 

L/ 
j=  0 

Similarly,  6V1 - 6Vo may be calculated from (64). 

6Vi - 6Vo = [ai t Vi 6xi t Vk6k t z6x i  1 T i  Vxx6xi t 6xi T i  Vxk6k 
X 

1 T i  1 T o  
t ~ 6 k  Vkk6k] - [ao t VE6k t 2 6 k  Vkk6k] 

The last equation may  be simplified somewhat by noticing that 
/ i 0 

k k  V = V whenever 6k is evaluated. Thus 

i 0 6x. t 6x. T i  Vxk6k 
(68) 6vi - 6v0 = a - a t v;6xi t z 6 x i  vkX 

1 

t Z 6 k  1 T i  V 6 k - 7 6 k  1 T o  Vkk6k 
kk 

Then, tes t  2 is performed by determining whether (66) ag rees  

t with (68) within a given tolerance.  

be reduced, o r ,  i f  6k is not present ,  6x. should be reduced by the 

If the tes t  is failed then 6k should 

1 

step- s ize  adjustment method. 

This tes t  is par t icular ly  simple to apply in  cases  where 

L(Xi ,Ui ,  ti) z 0. 

Fai lure  of the t e s t  at ti ( 0  < ti < tN)  allows one to discontinue 

integration of this 'trial t ra jec tory '  a t  t. instead of integrating all 

the way to tN; this can save considerable computer t ime. 
1 
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IV. Numerical Example - Comparison with McReynolds' Successive 

Sweep Method 

IV. 1. Statement of the Orbit  T rans fe r  Problem 

An orbit  t ransfer  problem [4], [5], [7], [ 8 ] ,  [12] has  been solved. 

In this problem, a control sequence must  be found to maximize the 

radial  distance of a rocket from the sun, with the te rmina l  condition 

that the rocket be in  a solar  orbit .  

x. is a 3-vector) whose components represent  radial  

distance (from the sun), radial  velocity, and angular 

1 

velocity, respectively, normalized so that the initial 

condition (in ear th ' s  orbit)  is 

x 0 =(!) 
(e = 0 is the condition for a N 

state to be in  a stable orbit .  ) 

-i L = 0.  

F(xN)  = x1 . Thus, 
9 

t k le l  t k2e2 
1, N 

v = x  

/ x2, i 

2 
1 
2 
1, i x l , i  x ?=i x3'i - -  Y2'ix39i x ~ ,  i 

I t A' 

Aico 

s in  u. 

'S u. 
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where 

i . 1405 
1 . 0  - .074871 * 

A =  
i 

The t ime interval [0 t ] is given. ' N  
ry i i t 1  + Note that ?(xi, ui) = F(xi)  t G (ui). Thus Gi = Vx (F(xi)  t Gi(Ui)) 

and f;lx and ? vanish. ux 

This statement of the problem was inser ted into (46)-(54) with t e r m s  

of o rder  higher than A t  dropped. The equations become: 

t e  di i t 1  i A = H  = V  G 

d-l*iT i t 1  

uu x uu 

P, = - A  f v u xx 

J- 1"i i t 1  P2 = - A  f Vxk 

a i = a  i t1  

Vi X = V X 

U 

.b 

vitl  X (Gi(uT) - Gi(Gi))At 

i t1 i t l "  - i a:c i -  i t 1  
t (Vx Fx(xi) t (G ( u i )  - G (ui))Vxx )At 

i t 1  i >;e vi k k  = v t (G (ui - G ' ( G ~ ) ) V ~ ' A ~  

i t1 - - i t1  TN 
V i k  = Vxk 

Vhk = Vkk i t 1  - P;xP2At 

(Fx(Xi)Vxk - P i  A P 2 ) A t  

i t1 i t l"  rJ -T i t 1  Vi t l+  Fx(xi) - f PTxPl)At 
Vi xx = V xx t { Vx Fxx(Xi) t Fx(xi )Vxx xx 

"i where ui was found by maximizing H which was equivalent to  maximizing 
vit l  i G (ui), which, in turn, w a s  equivalent to finding the maximum of X 

i vi'' s inu .  t vi'' c o s u  
x, 2 1 x, 3 
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Thus 

* 4; 
casu. - vi+' s i n u  = o vitl 

x, 2 1 x9 3 i 

* 
1 

u. = arctan(+'' x, 2 /vi+' x, 3 ) 

T e r m s  of higher o rde r  in  A t  were  dropped on the assumption 

that such t e r m s  were negligible in  comparison with those of o rde r  At. 
ak 

In the forward integration phases,  u. = u. t 6u. was computed 
1 1  1 

directly by maximizing 

( 7 9 )  
"i - i t1 T vitl T i t 1  
H (x. 1 t 6xi,ui,Vx 6xi+l xx 6k vkx 

= (VX i t1 6xT i t 1  Vitl  xx t 6kTVE1)($(Xi t 6xi) t Gi(u.)) 1 

with respect to  ui. 

becomes 

Note that 6xitl should be replaced by (14), which 

However, this is  of higher order  than the degree of approximation, 

and it is sat isfactory to replace 6xitl in  (79)  by 6xi. 

The new criteria described in  the previous section were  experi-  

mentally applied. 

to converge. 

Tes t  1 appeared to  be essent ia l  for the algorithm 

Tes t  2 w a s  Without it, 6k was often chosen too large.  

found to  be helpful and t ime saving. 

be found in  section V. 

A m o r e  detailed discussion will 

IV. 2 .  Comparison with Successive Sweep Method 

This algorithm converges somewhat fas te r  than McReynolds 

Successive Sweep Method [4], [5], [6] on this problem, s tar t ing from 

the same initial nominal. This may be because the two techniques 
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7 i - i  i i  differ pr imari ly  in  the minimization and f - f and H - H te rms  which 

a r e  present here  and absent from the successive sweep method. But, 

close to the optimal, those t e rms  a r e  small, and the minimization 

yields results which a r e  close to McReynolds I method for  choosing 

6ui. 

same. 

Thus, close to the optimal, the algorithms a r e  very nearly the 

Ear l ie r  i n  the computation, the t e r m s  a r e  large, and the 

minimization permits  the present routine to take la rger  steps. Thus, 

this routine is able to get to the vicinity of the nominal in  fewer i te ra -  

tions than the Successive Sweep Method, and once there,  to take just 

as many additional iterations to converge. 

In addition, this routine does not evaluate HUU (or  A) until a f te r  

a minimization has been performed. Thus H is always negative 

(definite). McReynolds evaluates H on the nominal trajectory, and 

so, he must  either choose his initial nominal so that HUU is negative, 

uu 

uu 

or  he must invoke a device to partially overcome the difficulty. t 

V. Numerical Results 

V. I. Discussion of the Trajector ies  in  Tables 1-4 

Tables 1-3 contain optimal t ra jector ies  calculated for  the problem 

of the previous section by means of the algorithm described above. 

(The computer program is presented in  detail in  Appendix B. See 

the section on the BETA subroutine for an explanaticn of P I ,  p2, p3. ) 

The value of 3. 32 was used for tN in  order  to compare resul ts  

with [4] and [5]. The other value, 3. 3194 was determined in  [12], 

where the authors solved a minimum time problem. Their problem 

i i t - / H i u  t Bi 1 is used in  place of H where B 

See [5, page 59b]. 

is chosen to go to zero  uu 
as the nominal is approached. 

=f Which becomes a maximization in this problem. 
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was identical with the present  problem, except that they specified 

x ( t  ) = 1. 525 (corresponding to the orbit of Mars )  as a constraint  

and left t N  f ree .  

(The normalized values of V z  agree  with X(to) given in [12], to 3 

figures.  ) 

1 N  
Our resul ts  agree  most  closely with those of [12]. 

The ra ther  large differences between the resul ts  of 100 t ime 

steps and of 400 steps indicate that 100 "Euler integration" steps a r e  

not really sufficient to  model the continuous time dynamic system. 

It should be noted that the greatest  discrepancies occur in the second- 

o rde r  quantities. 

ones whose exact equations have high order  A t  t e r m s  near  the 

nominal. 

But from (69)-(78), those quantities a r e  the only 

- 
i (Near the nominal, fi - f i s  smal l  o r  zero.  ) This may 

account for the difference in values between our p 1' P,, and P, 
and those given by McReynolds [5]. 

It is interesting to note that many different attempts have been 

made to solve this problem [4], [5], [7], [8], [12]. 

ag ree  most  closely with those quoted in [12] and a r e  m o r e  detailed 

than those previously published. 

Our resul ts  

Table 4 contains a t ra jec tory  which maximizes V without regard 

to terminal  constraints for nearly optimal values of kl  and k2. 

interesting to note that the maximum obtained for V is far f rom the 

maximum V obtained in Tables 1-3, and the 8 ' s  a r e  not zero.  

the free  end point problem, with k and k2 set  to their  optimal 1 

values has  at least  two local maxima; 

with the point 8 = 0, while the other does not. (We have found that 

i f ,  s tart ing with this other maximum solution, and the optimal k 's ,  

the k's  a r e  changed successively to reduce ( 8  , using the algorithm, 

It is 

Thus 

the one maximum coincides 
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then the optimal solution to the problem & obtained. 

adjusted away from their soptimalt values, but again return to these 

optimal values, a t  which stage the "correct! minimum of V i s  

attained and 8 = 0. ) 

I. e .  the k ' s  a r e  

On the average, the program took approximately 3 seconds pe r  

i teration for the 100 step program and 12 seconds per  iteration fo r  

the 400 step program. 

i s  defined as  the number of t imes the program went into BAKINT 

(see  Appendix B) i. e . ,  the number of t imes ( 2 7 ) ,  (28),  and (32) were 

integrated. 

many as 9 t imes through FORINT, the subprogram that inte- 

grates the state equations (1)  forward. Also, an iteration may 

include DKCALC, the program to integrate ( 2 0 )  and (31) and calcu- 

late 6k by (59). 

F o r  this purpose, the '*r,umber of i terations" 

Thus, a n  i teration includes at  least  one but possibly as 

In the ear l ie r  versions of the program, where Test 2 was 

absent, i teration t imes averaged as much a s  6 seccnds for  100 step 

t ra jector ies .  More details on this follow. 

The nominal used to compute the t ra jectory in  Table 1 was the 
- 

nominal McReynolds used: kl  = - 1 ;  kz = 1; i(t) = 1. 57078 for 

0 4 t 4 1.66; u(t) = 5.7B24 fox P. 66 < t e 3.32. 

1 cyXN) 1 6 (i = 1,23  required 15 i terations.  

Convergence to 

The control history of the nomir,aE used for Tables 2 and 3 

was the optimal t ra jectory computed I L  151. (Et W ~ S  l h e a r l y  inter-  

polated to 100 points, and then expazded t c  400 poir,ts by repeating 

each value four t imes) .  

and convergence required P O  iterations. 

k2 = 1.260031 (optimal values from [$]By and 11 iterations were required. 

FOP Table 2, El = -9.41936541, k2 = 1,264609, 
- 

F o r  Table 3, kl  = -1. 399631, 
- 
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Table 4 was s tar ted f rom a nominal consisting of the control 

history of Table 1 's  nominal and Kl and E, the same a s  those of 

Table 3.  

V. 2 .  Uses of Tests  1 and 2 

It took 6 i terations to "converge." 

With neither Test  1 nor Test 2 present the algorithm did not 

converge. 

Test 1 be satisfied was sufficient to  ensure convergence. 

this constraint was usually effective - i. e . ,  many values of 6k were 

rejected - th i s  problem appears to be very sensitive to changes in 

the multipliers k. 

Constraining each new trajectory by the requirement that 

Because 

P a i r s  of runs were compared: of each, one had only Test  1; 

the other had both tes ts .  

redundancy between the two tes ts .  

rejected by both Test 1 (where that was the only tes t )  and Test 2 

(where both tes t s  existed. ) In fact, the same values of 6k were ulti- 

mately accepted by the two programs,  and the programs generally 

converged to the same optimal t ra jectory in the same number of 

steps. 

The comparison indicated a cer ta in  

A large number of t r i a l  6k's were 

However, the redundancy was not complete. There  were 6k's 

that were accepted by Test  2 and rejected by Test 1. 

But the redundancy i s  helpful. Test  2 can be invoked often in 

the forward integration phase, while Test  1 can only be invoked af ter  

the forward integration phase is complete. 

execution time. 

tes t s  present,  a 100 step i teration took about 3 seconds. 

Test  1, a 100 step i teration took - on the average - more  than six 

seconds. 

Thus Test 2 can save 

This t ime appears  to be quite significant: with both 

With only 

(As pointed out in  the footnote on page 20,  the forward 

integration of the system equations can be terminated a s  soon a s  
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Test  2 fails. 

up until t 

eluded. ) 

However, Test  1 requires  that the integration be performed 

This accounts for the 'time saving' when Test 2 is in- " 

A difficulty was encountered in  using the tes ts .  As the algorithm 

approached the optimal, steps and changes in parameters  tended to 

grow ra ther  small .  Then all tes ts  which involve differences of large 

quantities become less  reliable - in  fact, excessively conservative. 

Thus there  should be some means of disabling the tes ts  when 6xi o r  

6k a r e  sufficiently small .  

Once the difficulty was recognized, Test  1 was disabled when 

-0 - 6-0 6Vo = Vo - V was less ,  in  absolute value, than 1 0  V . Test  2 

was disabled when the absolute value of 

a 0 t Vz6k t Z 6  1 k T o  Vkk6k 

-+ was less  than 10 

V. 3. Behavior of the Algorithm 

The existence of the maximum in  Table 4 may be i l lustrated by 

analogy with a static maximization of a function of a single variable.  

See figure 1. 

In o rde r  to maximize V(u), one may  approximate V with a 

second-order Taylor expansion in the neighborhood of <, a nominal 

value. 

- 1  - 2  
V(u) * V(U) t VI(U)(u - u) t ZV11(U)(U - u) 

The value of u that maximizes  this is given by 

- 
0 = Vl(U) t ZV1'(T;)(U 1 - u) 

o r  
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- VI(;) 
v "(E) u = u -  

Equation (81) may be used to  predict the improvement in  V using 

(82). 

1 vI(U)2 V(u) - V(U) = -- 2 vyn) 

which is positive for  V"(u) < 0. 

for  optimality: when (83) is zero, u i s  a maximum. 

If 

Then (83) may be used a s  a cr i ter ion 
- 

is a t  point A, and the local maximum a t  point B i s  the one 

desired ( ra ther  than the one a t  point F) some means must  be employed 

to guarantee that (82) wil l  produce a value of u in  the neighborhood of 

B. 

be replaced by 

A value near  E will eventually converge to F. Thus (82) should 

- VI(;) u = u - evlyij;) 

Then, (83) becomes 

Thus, an  improvement may be guaranteed a t  every stage if 

(84) is used witn proper choice of E, if the initial nominal l ies  some- 

where to  the left of point D. 

If the nominal i s  to the right of point E, the algorithm will 

tend to point F. 

Points between C and E a r e  problematical  because V"(u) is 

not negative-definite t . In neighborhoods of C and E, (84) and (85) a r e  

not useable. 

t In the case of vector u, a n  increased cost may be obtained even if 
Vn(u) is non-negative-definite. In the sca la r  case  this is not possible. 
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This is not perfectly analogous to the algorithm for discrete-  

time dynamic optimization algorithms, but some comparisons may 

be drawn. In the d iscre te  dynamic case,  u may be thought of as a n  

N-vector ( N  = 100 o r  400). 

E represents  the s tep-s ize  adjustment method. 

thought of as a graph of V as a function of u for constant, near  optimal 

k. 

tables 1 - 3 .  Point F is the maximum of table 4. 

Then V I  is  a vector,  VI' is  a matrix,  and 

Figure 1 may be 

Point B is the local maximum where el = e2 = 0, and is  shown in 

Behavior due to a point analogous to E has been observed. 

Iteration began at point A, for near optimal k. The next value of 

u was to the right of point D (because V calculated a t  that point was 

grea te r  than that of Table 1 .  

cessive i terations,  V continued to  increase,  as did I e l  1 and I e2 I 
because u was chosen to maximize H. 

to drive ao (analogous to (85)) below a cer ta in  value. 

i terations,  a began to increase.  

value of l e s s  than 

iteration, elements of V 

corresponds to a point near  C o r  E where V 

singularity manifests itself in the la rge  values of Vxx and ao). 

In this case,  N = 100, tN = 3 .  3 2 ) .  In suc- 

However, it was impossible 

After a few 

0 Finally, ao jumped from a typical 

to m o r e  than 300 in  one i teration. At that 

were of the o rde r  of 5000. This situation xx 
is near  singular (the uu 

Thus, in  order  to guarantee proper  convergence i terat ions 

must  be res t r ic ted  to the neighborhood of the relative minimum 

desired.  

by: 

In the present  algorithm, the restr ic t ions a r e  accomplished 

1) The choice of a 'sufficiently good' nominal. 
- 1  

2) Minibf ia t ion  of H(u) ( ra ther  than the use of 6u = -HUUHU 

as in  [5], [ 6 ] ,  [9] and [14]). 

3) Test  2. 
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V. 4. Numerical Values of Tolerances 

- 2  ETA, the cr i ter ion of optimality of ao, was set  to 10 and good 

0 resul ts  were obtained. Late in  the iteration process ,  a was always 

less  and generally considerably l e s s  than this value, so  that this 

constraint is ra ther  ineffective. Ear l ie r  in the process ,  little is 

gained by requiring a 

require precise  calculation of quantities which must change when 

k is changed by 6k, and which a r e  non-critical. 

0 to be extremely small, since that would 

Satisfactory resul ts  were obtained with CK and TOL, the tolerances 

of Test 1 and Test 2, respectively, set  to 20%and 30%~. 

1070, i t  became impossible to take steps sufficiently small in  6x. to 

satisfy Test  2.  

At less  than 

1 

(This was found with N = 100.  ) 

- 3 2 -  



T a b l e  1 

10 0 T i m e  Steps F i n a l  - Time 3. 32 - - 

V 
x1 

V 
x2 

V 
x3 

t x1 U x2 x3 

. 4 4 3 0  
, 5188 
, 6 0 7 3  
, 7 0 9 7  
. 8 2 6 9  
. 9 5 9 2  

1.107 
1,271 
1.460 
1.730 
2 .886  
4 . 4 9 3  
4 .765  
4.913 
5 .023  
5.116 
5.196 
5.269 
5.335 
5 .398  - 

1 
1. 0008 
1. 0044 
1. 0121 
1.0252 
1.0446 
1. 0711 
1.1047 
1.1455 
1.1929 
1.2459 
1. 3008 
1. 3508 
1.3945 
1. 4315 
1. 4619 
1.4860 
1.5039 
1. 5162 
1.5233 
1.5257 

0 . 0134 
. 0 3 5 3  
.Ob49 . 1011 . 1419 
,1853 
, 2 2 8 8  
.2701 . 3071 
. 3 3 4 7  . 3157 
, 2 7 8 6  
, 2 3 9 0  
.1991 
.1600 
,1225 
.0872  
.0546  
.0254  
.oooo 

1 
1,0201 
1. 0366 
1.0478 
1. 0520 
1.0479 
1. 0349 
1. 0129 
. 9 8 2 3  
. 9 4 3 3  
. 8 9 2 4  
. 8 3 7 0  
.8032  
.7811 
. 7 6 7 5  
.7611 
. 7 6 0 9  
,7661  
. 7 7 6 2  
. 7 9 0 8  
. 8 0 9 6  

. 94316 2 .0604 

1.4229 

0 . 166 . 332 
. 4 9 8  
. 6 6 4  
. 8 3 0  
. 9 9 6  

1.162 
1. 328 
1.494 
1.660 
1. g26 
1.992 
2. 158 
2. 324 
2 .490  
2.656 
2.822 
2 .988  
3.154 
3 .320  

1.8890 

1.5777 , 9 4 9 8 2  

1.2963 

1. 0857 

_. 85152 . 82311 

.64554  . 34816 

. 96818 . 36222 

.. 045050 

.055367 

.93356  -. 048480 

, 0 0 3 6 7 9 3  .95639 -. 27469 

1. 0117 

1.1031 

-. 58597 ,17505 

-. 88384 .44689  

1. 2105 

1.3356 

-1. 1608 . 81108 

1,2647 -1.4034 

O p t i m a l  V = L.52572699 

= 1. 26501024 

kl = -1.40339248 

k2 
e1 = . 7 5  io-6 
8 = . l l  x , l o - 6  

2 -  I 
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t 

0 . 332.. 
.664 
. 9 9 6  

1. 328 
1.660 
1.992 
2. 324 
2,656 
2.988 
3. 320 

t 

0 . 332 
.664 
.996  

1. 328 
1.660 
1.992 
2. 324 
2.656 
2.988 
3.320 

t 

0 . 332 
.664 
.996  

1. 325 
1.660 
1.992 
2. 324 
2,656 
2.988 
3.320 

x x  V 
1 1  

17,382 
M, 024 
10.. 142' 
6, 5844 
3.8740 
1. 6309 
1. 0014 -. 62113 . 30776 

x .  20185 -.  33000 

ii,  763 
10.134 
7.9954 
5.7024 
3.5734 
1.2686 
.68877 
.40892 . 23166 
.lo279 

0 

Vklkl 

6.2739 
5.6858 
4. 9673 
4. 0578 
2.8729 
. 73108 
.29045 . 13863 . 061401 
. 020738 

0 

x x  V 
1 2  

5. 0412 
5. 9021 
5.6729 
4, 3821 
2.6629 

,93085 
.43781 
.20735 
. 095264 
. 037090 

0 

Vx2kl 

1.8948 
3.2408 
3.8989 
3. 7125 
2.8099 
I. 3089 
1.0293 
.95075 
.95901 
.98678 

1 

1. 1584 
1. 0802 
.97793 
.83754 
.63669 . 28510 
.19060 
.lo49 5 
,053471 . 020602 

0 

Table 1 

V 
x1x3 

25. 681 
19. 323 
12. 489 
6.8543 
3.2567 
1. 2301 
,. 83305 
.68267 
. 51340 
.2908P 

0 

vx3kl 

16.457 
13. 460 
9.8678 
6.3684 
3. 5868 
1. 5331 
1. 0404 
,84940 
.61959 . 33387 

0 

Vk2k2 

. 34241 

. 33200 . 31744 

.29576 

.26168 . 20310 

. 13'001 . 081612 . 047200 . 020546 
0 

V 
x2x2 

2.7053 
2. 5363 
2.6660 
2. 3731 
1.5047 
,40562 
,17979 

14331 . 10731 . 040093 
0 

Vxlk2 

2. 0921 
1. 8111 
1.4737 
1. 1258 
. 80242 
.45836 . 36011 . 30271 
,27821 
.26806 
.26537 

vx2x3 

4. 1297 
5.9353 
5. 9028 
4.3792 
2. 5309 
1.0976 
.74599 . 37114 
. 028400 -. 13086 

0 

Vx2kZ 

.47188 

.606Q3 

.62691 . 51215 

.28264 -. 023940 -. 16333 -. 19132 -. 1S414 -. 084390 
$ 0  

V 
x3x3 

36. 371 
26. 238 
15. 733 
7,. 5536 
2. 7188 

.34899 -. 72441 
-I,. 1303 
-1. 0641 -. 61585 

0 

Vx3kZ 

2. 6138 
2. 0839 
1.5026 . 97654 
.59946 
. 38236 
. 56995 . 74612 
,88625 
.97275 

1 
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Table 2 

t 

0 . 166 
.332 
.498 
.664 
,830  
,996 

1.162 
1.328 
1.494 
1.660 
1.826 
1.992 
2.158 
2. .324 
2.490 
2,656 
2,882 
2.988 
3.154 
3.320 

400 Time Steps - Final Time = 

x1 U 

.4332 1 .. 5072 1. 0010 

.5937 1.0049 . 6936 1. 0132 

.8080 1.0269 

.9371 1.0469 
1. 081 
1.241 
1.426 
1.683 
2.645 
4.437 
4,732 
4.885 
4.999 
5.093 
5.176 
5.250 
5. 318 
5.382 - 

1.0740 
1.1082 
1.1493 
1.1970 
1.2502 
1.3048 
1. 3542 
1. 3972 
1.4337 
1.4636 
1.4872 
1.5047 
1. 5165 
1. 5232 
1. 5254 

x2 

0 . 0139 
.0361 
,0659 
. lo20 
.1425 
,1855 
.2285 
.2693 
.3059 
.3335 . 3149 
.2780 
.2386 
.1988 
.1598 
.1224 
.0871 
.0546 
,0254 
.oooo 

x3 

1 
1.0200 
1. 0362 
1.0470 
1.0507 
1.0464 
1.0332 
1. 0114 
.9811 
,9428 
.8927 
.8375 
.8039 .. 7818 
.7682 
.7617 
.7613 
.7664 
.7765 
.7910 
.8097 

V 
x1 

1.8803 
1.7254 
1.5729 
1.4273 
1.2942 
1.1790 
1.0857 
1. 0160 
.96936 

94344 
.93488 
.94036 
,95720 
.98321 

1. 0168 
1. 0569 
1.1029 
1. 1541 
1.2102 
1.2709 
1.3356 

3,'32 

V V 
x2 x3 

.93239 

.94700 

.93843 

.90323 

.83985 . 74911 
, 63410 
.49963 . 35134 
.19473 . 034410 

f. 12632 -. 28580 -. 44323 -. 59804 -. 74962 -. 89717 
-1. 0396 
-1. 1755 
-1. 3029 
-1. 4194 

2. 0340 
1. 7201 
1.4045 
1.0982 
, 81261 . 55832 . 34405. . 17548 
.054908 -. 018536 -. 048200 -. 039267 
.. 0028600 . 074425 
.17286 
.29642 
.44398 
.61486 
, 80871 

1.0253 
1: 2646 

Optimal V = 1.52537493 

= 1.26460750 

kl = -1.41936325 

-6 k2 
e l  = - . 3 3  10 
e2  = .37 
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t 

0 . 166 
.332 
.498 
.664 
.830 
.996 

1.162 
1,328 
1.494 
1.660 
1.826 
1.992 
2.158 
2.324 
2.490 
2.656 
2,822 
2.988 
3,154 
3.320 

vxlxl 

25.668 
23,004 
20.020 
16. 875 
13.767 
10.887 
8. 3712 
6.2725 
4.5578 
3.1074 
1. 6814 
1.2733 
1. 0094 . 80110 
, 62423 
.46343 
.30967 
, 15707 
.0014626 

-7,16020 -. 33005 

V 
.' ' XlX2 

6.4714 
7.3407 
7.8261 
7.8472 
7.4030 
6.5734 
5.4944 
4, 3143 
3.1493 
2,0442 .. 96700 . 66432 
.44680 

30614 
; 21096 
.14436 
,096961 
.062838 
.037691 
, 017914 
0 

Table 2 

x x  V 
1 3  

36.811 
32.083 
26,940 
21. 711 
16.748 
12.357 
8,7324 
5.9299 
3.8821 
2,4311 
1.2982 
.95119 
.85425 . 77199 
.6  9358 . 61088 -. 51862 
.41337 
.29278 . 15530 

0 

V 
x2x2 

2.9982 
3. 0133 
3.1994 
3.4165 
3.5261 
3.4270 
3.0840 
2.5329 
1.8550 
1.1295 
,42449 
.26681 . 17135 . 14147 
.13159 
, 12113 
.lo202 
.073672 
,040783 
.012180 

0 

V 
x2x3 

6.1215 
7.5962 
8.4188 
8. 5199 
7.9529 
6.8843 
5.5498 
4.1859 
2,9672 
1.9686 
1.1349 
.91097 
.75975 . 581Q2 . 39144 
.20821 
,050278 -. 063771 -. 11762 -. 098794 
0 

V 
x3x3 

51. 271 
43.827 
35.869 
27.975 
20.696 
14.457 
9.4885 
5.8081 

. 3.2561 
1. 6713 
,39922 

'-7 ,-3 1OUV 
' 7 .  68761 
7.95063 

-1. Q988 
-1.1304 
-1. 0504 -. 87208 -. 61715 -. 31479 
0 
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Table 2 

t 

0 . 166 . 332 
.498 
,664  
,830  
.996 

1.162 
h 328 
1.494 
1.660 
1.826 
1.992 
2,158 
2.324 
2.490 
2,656 
2.822 
2,988 
3, 154 
3,320 

vx k 1 1  

16. 324 
15. 077 
13. 635 
12. 044 
10. 369 
8,6893 
7.0750 
5.5754 
4. 1963 
2.8623 
1.3086 . 90514 
.69021 
.53029 
.40854 
, 31148 
, 23115 
.16260 
,10257 
.048862 

0 

VxZkl 

2,7072 
3.6576 
4.3937 

5.0587 
4.9548 
4. 5854 
4.0023 
3.2638 
2.3949 
1.3438 
1.1591 
1.0388 

4.8705 

.97807 

.95379 

.95055 

.95886 

.97224 

.98591 

.99615 
1 

vx3 kl 

22,568 
20.360 
17. 898 
15, 288 
12. 652 
10. 119 
7.8073 
5.8054 
4.1519 
2.8156 
1.5850 
1. 1539 
1. 0480 
.94985 
.84945 . 74012 . 61829 
.48265 
.33340 . 17185 

- 0  

Vx2kl 

2,9965 
2,7752 
2. 5261 
2,2562 
1.9757 
1.6962 
1.4283 
1. 1785 
.94615 . 71731 . 47315 
.42623 
.36451 
.32738 
.30386 
.28843 
.27827 . 27178 
.26792 
.26598 
.26540 

. 62088 

. f4548 . 83261 

.87461 ,. 86650 

.80765 

.70248 . 55971 . 38932 
,19653 -. 0064651 -. 084704 -. 15287 -. 18133 -. 18620 -. 17506 -. 15239 -. 12132 -. 084297 -. 043302 

0 

Vx3k2 

3.8397 
3.4393 
3. 0041 
2. 5524 
2. 1047 
1. 6828 
1. 3065 
.99064 

74192 
.55547 . 41096 
.48855 
,57766 
.66436 
,74675 . 82111 . 88454 
.93504 . 97138 
.99302 

1 
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Table 2 

t 

0 . 166 . 332 
.498 . 664 
.830 
. 9 9 6  

1.162 
1. 328 
1.494 
1.660 
1.826 
1.992 

I 2.158 
2. 324 
2,490 
2.656 

I 2, 822 
2.988 

I 3. 154 
I 3. 320 

8. 8160 
8. 3022 
7.7593 
7. 1776 
6.5494 
5.8690 
5. 1333 
4. 3363 
3.4536 
2. 3868 
a 77092 
e 41196 
.29083 
a 20165 

13913 
094332 . 061797 . 038102 

e 020935 . 0086435 
0 

1. 6610 
1. 5836 
1. 5002 
1.4088 
1. 3075 
1. 1947 
1. 0687 
.92737 
.76489 

56341 
.29390 
26081 
19216 

e 14280 . 10584 
076993 

a 054015 
.035595 

020859 
0091655 

0 

vk2k2 

. 43881 . 42715 
41432 

0 39995 
~ 38363 
a 36492 
~ 34336 
e 31828 

28837 
.25032 

20465 
e 17086 . 13187 
e 10454 
~ 082684 

064096 . 047855 . 033524 . 020865 . 0097293 
0 

1, 6117 
1. 6380 
1.6858 
1.7499 
1. 8270 
1. 9211 
2, 0551 
2. 3043 
2. 9216 
5. 2092 

-9. 1970 
35,639 

-14. 033 
-9.4342 

1. 6346 
-4.7097 

12,727 
37,541 
114. 52 

593.49 
OD 

82 

.92861 
, 92017 
.94436 

1.0069 
1. 1172 
1.2932 
1.5759 
2. 0820 
3.2442 
7. 7912 

* 100. Q4 
-21. 079 
-86.862 
-98.806 
-118. 50 
- 153. 98 
- 221. 03 
-366. ,27 
-78L 63  
-3112. 0 

OD 

B3 

1.2998 
1. 3739 
1.4882 
1. 6473 
1. 8637 
2. 1662 
2, 6231 
3. 4117 
5.0950 

410,. 505 
71. 209 

-23,0 071 
-25. 854 
-14. 020 
- ,  13581 

21. 075 
60,962 

1153. 11 
442. 30 

2247.1 
m 
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Table 3 

t 

0 
. 166 . 332 
,498  
.664 . 830 
.996 

1. 162 
1. 328 
1.494 
1.660 
1.826 
1.992 
2. 158 
2. 324 
2.490 
2.656 
2. 821 
2.987 
3. 153 
3. 319 

400 Time Steps - 

U 

.4333 
, 5074 
.5938 . 6937 
. 8 0 8 0  

9372 
1. 081 
1.242 
1.426 
1.683 
2,645 
4.437 
4. 732 
4,885 
4.999 
5. 093 
5. 176 
5.250 
5.318 
5.382 - 

x1 

1 
1. 0010 
1. 0049 
1. 0131 
1. 0268 
1. 0469 
1. 0739 
1. 1081 
1. 1493 
1. 1969 
1. 2501 
1. 3046 
1. 3540 
1. 3971 
1.4335 
1.4634 
1.4870 
1. 5045 
1. 5163 
1. 5230 
1. 5252 

Optimal V = 1. 52516085 
kl -1. 41910912 

k2 : 1.26441935 
-5 

-6 
e l  = -.. i o  io  
e2  =-. 26 io  

x2 

0 . 0139 . 0361 
. 0658 
. 1019 
.1425 
.1854 
, 2284 
,2692 . 3059 
.3334 
, 3148 
.2779 
.2386 
.1988 
,1598 
.1223 . 0871 
, 0546 
.0254 
. oooo  

Final  

x3 

1 
1. 0199 
1.0362 
1. 0470 
1. 0507 
1. 0464 
1. 0332 
1. 0114 . 9812 

9429 .. 8927 . a375 
.8040 
. 7819 
,7682 . 7617 . 7614 
,7665 
,7765 
.7911 
.8097 

T ime  = 

V 
x1 

1.8800 
1.7252 
1. 5727 
1.4272 
1. 2941 
1. 1790 
1. 0856 
1. 0160 
,96934 
.94343 
, 93487 
,94035 

95720 
98321 

1. 0168 
1.0569 
1. 1029 
1. 1541 
1.2103 
1.2709 
1.3357 

3. 3194 

V 
x2 

... 93244 
. 94699 . 93838 . 90314 
. 83974 
.74899 
. 63399 
.49953 . 35127 
, 19468 
, 034386 -. 12631 -. 28576 :. 44317 

1. 59796 
7 .  74951 
5 .  89703 

-4,0394 
-1. 1753 
-1. 3026 

V 
x3 

2,  0334 
1. 7196 
1. 4041 
1. 0979 
, 81232 . 55811 . 34391 
, 17540 
. 054860 -. 018561 -. 048213 

-. 039278 . 0028443 
. 074400 
. 17282 
. 29636 
.44390 
. 61476 
. 80858 

1. 0252 
-1. 4191 1.2644 
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t 

0 
, 166 . 332 
.498 
.664 
.830 
.996 

1. 162 
1. 328 
1.494 
1.660 
1.826 
1.992 
2. 158 
2. 324 
2.490 
2 .  656 
2. 821 
2.987 
3. 153 i 3. 319 

x x  V 
1 1  

25. 654 
22. 991 
20. 009 
14. 866 
13. 760 
10. 882 
8. 3684 
6. 2708 
4. 5568 
3. 1069 
1. 6813 
I. 2735 
1. 0096 . 80125 . 62436 
.46354 

30975 . 15712 

V 
x1x2 

6.4705 
7. 3385 
7. 8231 
7. 8437 
7.3995 
6. 5703 
5. 4918 
4. 3124 
3. 1480 
2,  0433 

.96672 

. 66426 

.44678 

. 30613 

. 21096 

.14436 . 096968 . 062844 . 0014710 . 037694 --. 16023 . 017915 

Table 3 

V 
x1x3 

36. 789 
32. 064 
26.924 
21. 698 
16,739 
12. 351 
8.7288 
5. 9278 
3. 8811 
2,4306 
L 2981 . 95129 
.85434 
,77206 . 69364 . 61091 . 51865 
.41338 
.29279 
.15530 -. 33013 0 0 

V 
x2x2 

2.9974 
3. 0124 
3. 1981 
3. 4148 
3. 5240 
3.4247 
3. 0819 
2. 5311 
1.8536 
1. 1286 
. 42418 
. 26668 
. 17128 
. 14142 
. 13156 
. 12111 
, 10201 
. 073662 
. 040778 . 012178 

0 

V 
x2x3 

6. 1205 
7.5935 
8. 4148 
8. 5154 
7. 9484 
6. 8805 
5. 5469 
4. 1839 
2, 9660 
1. 9680 
1. 1346 
. 91091 
. 75970 
. 58099 
, 39141 
. 20820 
. 050286 -. 063752 -. 11760 -. 098777 

0 

V 
x3x3 

51. 239 
43.799 
35. 846 
27. 958 
20. 684 
14.449 
9.4838 
5. 8055 
3.2549 
1. 5708 
. 39905 -. 30994 -. 68749 

-. 95047 
-1. 0986 
-1. 1302 
-1. 0502 
-. 87192 -. 61704 -. 31473 

0 
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Table 3 

t 

0 . 166 . 332 
.498 
.664 
.830  
.996 

1. 162 
1. 328 
1.494 
1. 660 
1.826 
1.992 
2.158 
2, 324 
2.490 
2, 656 
2. 821 
2.987 
3, 153 
3. 319 

Vxlkl 

16. 317 
15. 071 
13. 630 
12. 039 
10,366 
8.6864 
7. 0729 
5. 5739 
4. 1953 
2, 8616 
1. 3084 . 90522 
. 69030 
. 53037 
,40861 . 31154 
. 24120 
. 16264 
. 10259 
. 048875 

0 

Vx2kl 

2,7075 
3. 6572 
4. 3926 
4.8689 
5. 0568 
4. 9528 
4. 5835 
4, 0006 
3. 2625 
2. 3940 
1.3435 
1. 1590 
1.0388 
.97804 

95377 
.95054 
. 95886 
.97224 
.98590 
. 99615 
1 

22.557 
20. 351 
17. 890 
15. 281 
12. 647 
10. 115 
7.8046 
5.8036 
4. 1508 
2, 8151 
1. 5848 
1. 1540 
1. 0481 
.94994 
. 84953 
. 74018 
. 61834 
.48268 
. 33342 
. 17186 

0 

2, 9951 
2, 7740 
2, 5250 
2. 2552 
1.9749 
1.6956 
1.4279 
1. 1782 
.94593 . 71717 
. 47314 
.42626 . 36455 
. 32743 
. 30391 
.28848 
. 27832 
. 27183 
,26798 
. 26604 
. 26546 

.. 62084 3. 8376 
.74530 3.4374 
. 83230 3. 0025 
. 87420 2. 5510 
. 86604 2,1036 
. 80718 I. 6819 
.70203 1. 3059 
. 55932 , 99027 
. 38900 . 74171 
. 19629 . 55536 

-. 084763 .48859 -. 15291 . 57770 -. 18136 . 66440 -. 18622 .74678 -. 17508 . 82113 -. 15240 . 88456 -. 12133 . 93505 -. 084302 . 97139 

-. 0065624 .41096 

-. 043304 , 99303 
0 1 
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t 

0 
. 166 
,. 332 
. 4 9 8  
. 6 6 4  
. 8 3 0  
. 9 9 6  

1. 162 
1. 328 
1.494 
1. 660 
1.826 
1.992 
2. 158 
2. 324 
2 .490  
2 .656  
2, 821 
2.987 
3, 153 
3. 319 

8. 8130 
8 .2995 
7.7568 
7. 1754 
6. 5474 
5. 8673 
5. 1318 
4. 3350 
3.4525 
2, 3859 

.77050  
e 41195 

29084 . 20165 . 13913 
.094332 

061797 . 038101 
. 020934 . 0086431 

0 

1. 6604 
1. 5831 
1.4997 
1.4083 
1. 3071 
1. 1943 
1. 0684 
. 92709 
.76466  
~ 56322 
.29385  
e 26081 
e 19217 
.14280 

~ 10584 
a 076991 . 054013 
, 0 3 5 5 9 3  
a 020858 
a 0091649 

T a b l e  3 

Vk2kZ 

43870 
~ 42704 . 41422 

39986 
38354 . 36485 

. 34330 
31823 

~ 28833 

. 20465 

. 17086 . 13187 . 10454 
~ 082681 . 064092 
~ 047852 
~ 033521 . 020863 

.25029  

0097283 
0 0 

P l  

1. 6118 
1. 6381 
1. 6860 
1. 7501 
1. 8273 
1. 9215 
2. 0557 
2. 3051 
2.9229 
5. 2124 

36. 663 

-14. 038 
-9. 1921 

-9. 4381 
-4. 7120 

1. 6350 
12. 732 
37. 558 
114. 57 

593, 80  

p2 

~ 92857 
. 92017 
. 9 4 4 4 0  

1. 0070 
1. 1174 
1. 2934 
1. 5762 
2. 0825 
3 .2455 
7 .7957  

100.10 
-21. 042 
-86.876 
-98 ,827  
- 118, 5 3  
-154. 02 
-22L. 08 
-366 .35  
-781. 82  

-3112. 9 
co co 

F 
3 

1. 3000 
1. 3742 
1. 4886 
1. 6478 
I. 8643 
2, 1669 
2, 6241 
3. 4131 
5. 0974 

10. 511 
71. 248 

-23. 063 
-25. 861 
-14. 025 
- ., 13744 
21. 079 
60. 976 

153. 15 
442.. 42 

2247. 8 
co 
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Table 4 

t 

0 
, 166 . 332 
.498 
.664  
.830 
.996  

1. 162 
1. 328 
1.494 
1.660 
1.826 
1.992 
2. 158 
2. 324 
2.490 
2.656 
2. 822 
2.988 
3. 154 
3. 320 

100 Time Steps - Fina l  Time = 3.32 

U 

1. 147 
1.458 
1.802 
2.172 
2.423 
2. 674 
2. 819 
2. 917 
2.990 
3.048 
3.098 
3. 143 
3. 186 
3.229 
3. 275 
3,331 
3.406 
3, 528 
3,778 
4.473 - 

x1 

1. 
1. 0015 
1. 0071 
1. 0167 
1. 0294 
1. 0433 

. 1. 0565 
* 1. 0672 

1. 0738 
1. 0747 
1. 0686 
1.0543 
1. 0305 

9957 
.9484 
, 8867 
.8083 
,7100 . 5878 
,4361 
.2559 

x2 x3 

0 
.0233 
. 0489 . 0706 
. 0826 . 0833 
,0722 
, 0508 
.0203 -. 0184 -. 0650 -. 1194 -. 1818 -. 2532 -. 3349 -. 4294 -. 5404 

-. 6738 -. 8374 
-1. 0316 
-1. 0621 

V 2, 05800182 

= -1. 3996310 kl 

el = -1.0620840 

e2 

k2 = 1.2600310 

= 0.25048833 

1' 
1, 0055 
,9993 . 9812 
.9529 
.9200 
.8850 
. 8525 . 8221 

7956 
.7737 
.7572 
.7472 
.7452 . 7536 
.7765 
. 8211 
.9021 

1. 0534 
1: 3731 
2.2275 

V 
x1 

V 
x2 

1. 5399 3. 8503 

, 065221 3.4865 

-1. 2528 2. 6667 

-2, 0365 1. 7928 

-2. 4128 '1.. 0467 

-2.6385 39794 

-2, 7998 -. 14885 

-2.9268 -. 59906 

-2. 9898 -. 97790 

-2. 6070 -1. 3288 

5. 8682 -1. 3996 

V 
x3 

1. 5607 

-1. 1789 

-3. 5848 

-5. 1481 

-5. 9689 

-6. 2592 

-6. 0700 

-5. 3983 

- 4. 1832 

-2.  2274 

r .2 t ;oo  
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t V 
xlxl x x  V 

1 2  

I -24. 414 -2 .0022 0 

-36. 687 -17. 856 

-53. 131 -41. 090 

-61. 956 -58.. 592 

-61. 104 -65. 932 

-51. 538 -62. 151 

-33 .480  -48. 075 

-8 .  6 6 6 3  - 2 7 .  949 

18. 256 -9. 1917 

39, 504  1. 1026 

-28. 541 0 

Table 4 

V 
x1x3 

-37. 216 

-47. 037 

-54 .533  

-47. 827 

-27.929 

-1. 0216 

24. 962 

40. 5 6 2  

39, 034 

21. 040 

0 

V 
x2x2 

20.959 

7. 6941 

-13. 587 

-35.420 

-49. 859 

-52. 137 

-41. 927 

-24. 679 

-9.. 0632 

-. 90940 

0 

V 
x2x3 

-7. 9807 

-30. 388 

-51. 207 

-58.469 

-48. 845 

-27. 091 

-3. 0412 

12. 112 

13. 118 

4. 8651 

0 

V 
x3x3 

-43. 107 

-45 .222  

-37. 624 

-12. 146 

-21. 572 

48. 156 

55 .434  

41. 086 

16. 361 

-. 70196 

0 
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Table 4 

t 

0 

Vxlkl 

-. 63978 

-. 058647 

.22644 

.20785 

. 055229 

-. 11039 

-. 14652 

. 10870 

. 77093 

1. 8439 

0 

Vx2kl 

-1. 8778 

-1. 8077 

-1. 6848 

-1. 6316 

-1. 6358 

-1. 6351 

-1. 5086 

-1, 1360 

- .50338 

2. 9461 

1 

-. 73634 

. 47180 

1.3543 

1. 9042 

2. 3214 

2,7404 

3. 2172 

3. 6343 

3. 6627 

2. 8218 

0 

, 28581 1. 6463 . 11388 

-.. 55295 1. 3166 -1. 2612 

-1. 4659 . 65052 -2. 5802 

-2. 2572 7 .  18701 -3. 5000 

-2, 9432 -1. 0756 -3. 9021 

-3.4968 -1. 8585 -3. 6752 

-3.7835 -2, 3211 -2.7753 

-3. 6113 -2.2884 -1. 3815 

-2, 8160 -1. 7731 , 081057 

-1. 1017 -. 96980 

3.. 863 5 0 1 

1. 1273 

-45- 



Table 4 

t 

0 . 332 
. 664 
. 9 9 6  

1. 328 
1. 660 
1.992 
2, 324 
2. 656 
2, 988 
3. 320 

Vklkl 

. 17173 

. 17168 . 17005 . 16428 

.15402 . 13853 

. 11778 

.093937 
, 070021 
. 043426 

0 

%k2 

.22694  

. 22658 

. 22270 . 21388 

. 19916 . 17695 

. 14737 

. 11390 
, 081529 
, 048409 

0 

Vk2k2 

. 30997 
, 30454 
.29477 . 28121 
. 26008 . 22827 
. 18608 . 13910 
. 095279 
. 053988 

0 
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VI. Conclusion 

A new discre te  algorithm has been derived which is analogous 

to the continuous algorithm of [ l]  and [2]. 

(Test  1 and Test  2 )  have been developed to ensure that the new 

iterate is i n  the neighborhood of the cur ren t  nominal. 

Extensions to the latter 

The algorithm has been used to solve a non-linear, optimal 

orbit  t ransfer  problem. This problem has been attempted, and 

solved, in various forms,  by a number of investigators using dif- 

ferent computational methods. 

The resul ts  obtained in  this paper ag ree  mos t  closely with 

those of [12]. 
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Appendix A 

Continuous Results f rom Jacobson 

The following is a statement and solution of the continuous-time 

optimal control problem solved in  [I]. The notation has been 

modified to conform to  that of this paper.  

involving derivatives have been transposed, and - has been placed 

Over cer ta in  symbols to coincide with section 111.1, above. 

Thus some expression 

Problem: given that 
. r ,  
x = f (x ,u, t )  ; x(t  ) = x 

0 0 A* 1 

Find u(t) ,  t E [to, tr] to minimize 

L 

f f  c ( x ,  u, t)dt f F(x(tf))  
A 

A-2 V(xoyto)  = 
L L 
0 

while satisfying 

The constraints (A-3) a r e  adjoined to the cost  functional (A-2): 

The solution is : 

A- 5 

A- 6 

A- 7 

A-8 

A- 9 

t F v  ) P I  = -Huu(Hux u xx 
d-1  N 

NM1-T P, = -H f V uu u xk 

. '4 ;3 
- a = H - H  

- "+ X = fix t ( ? -  ?)VXX 

I d =  -vk = (f - f)V* 

-49- 



- ‘“T TAT A-10 -Vxk - cf, ’ P1 fu)Vxk 

T rJ ”-1- = -V f H f Vxk -Vkk x k u  uu u 

-V xx = H xx t YTV x xx t V xx x - (HUx t fuVxx) HUU(HUx t fTVxx) 

A-11 

rc, d T T+-1 
A-12 

where H = L t Vxf, and derivatives of H a r e  taken with V X constant, i. e. 
N &  rJ 

N 

H x = C x t V ?  x x  

The boundary conditions of (A-7) through (A-12) a r e  the same  as 

equations ( 3 3 ) - ( 3 8 )  above. 
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Appendix B 

The Computer P r o g r a m  

Implementation of the algorithm on the problem described in  

section three required the use of a computer. A program has been 

written for the IBM 7094 in  FORTRAN IV, which consists of several  

subprograms. 

1. MAIN 

This program is described in  Flow Chart  I1 i n  general outline. 

This program coordinates the algorithm. It s t a r t s  by setting initial 

quantities, and quantities which do not change throughout the compu- 

tation. Included a r e  input numbers,  constant elements of f and f 
X xx' 

and constant boundary conditions. 

N r)  

The routine FORINT is called, which integrates the state 

equations (1). 

is used. Subsequently, u. is calculated in  FORINT. The performance 

index and terminal  constraints a r e  evaluated. 

On the f i r s t  iteration, the initial nominal control history 

1 

The calling of FORINT is par t  of the ffstep-size adjustmentff, as 

described in  [ l ]  and [ Z ]  and Flow Chart  I. 

Once a suitable t ra jectory is calculated, it i s  printed out and 

BAKINT is called to integrate the equations for ai, V:, and Vi If xx' 
0 the absolute values of a 

ETA, ETAl,  and ETAZ, respectively (which a r e  input quantities), 

and the terminal  constraints a r e  l e s s  than 

i teration ceases .  

optimal feedback vector p such that on a path slightly perturbed from 

the optimal, 6u = pT6x. 

The routine BETA i s  called, which calculates the 

If ao i s  not smaller  than ETA in absolute value, the program 

t ransfers  to the forward integrator to improve the nominal trajectory.  
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When the t ra jec tory  has been optimized for  a given value of k, 

i. e . ,  when ao is dr iven to l e s s  than ETA, the routine DKCALC is 

called, which integrates the Vkk and Vxk equations, and calculates 

6k according to (59).  Tne value of E is originally 1. , but if each 

component of 0 is not decreased (by the introduction of 6k) in 

absolute value, and i f  the change in performance index is  not within 

a tolerance (an input quantity) of the value predicted by (60) (i. e . ,  if 

Test 1 is failed), then E is reduced by half and the forward integrator is 

called again to calculate 0 and V. 

is replaced by 'i; t 6k and the program t ransfers  to BAKINT. 

i i 

When the c r i te r ia  a r e  satisfied,  E 

2. FORINT 

This routine integrates  (1) forward. It calculates u. by maximizing 
1 

i t 1  - t 6Xitl, k t 6k)f(x. t 6xi, ui, ti) , 
1 1 i' x (Xitl 1 

H(x. t 6x., u k t 6k, ti) = V 

which is equivalent to maximizing 

E = C sinu.  t D cos u. where 
1 1 '  

i t 1  - c = vx 

D = V (xitl t 6xi t l ,k  t 6k) . 

(xitl t 6xitl ,E t 6k) 
2 

- i t 1  - 
x3 

i t 1  C and D a r e  calculated by expanding Vx 

6x. is used in  place of 6x 

in  6xitl and 6k. However, 

See section IV. 1. i t l '  1 

At the maximum of E ,  

-1 u. = t a n  (C/D) , 
1 

but this a lso determines a minimum. The maximum is chosen simply 

by requiring that E be positive. 

. .  
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Test  2 is applied by determining whether (11) is constant (within 

a tolerance TOL) over time. (It should be 'constant because Li is 

zero. ) Because this t e s t  is t ime consuming, it is done a t  r a r e  in- 

tervals.  

3. BAKINT 
* 
1, 

This routine calculates u. according to (19), (in a s imilar  

fashion to that of calculating ui in  FORINT) and integrates (27), (28), 

and (32) with (33), (34), and (38) as boundary conditions. It prints 

out i t s  resul ts .  

4. DKCALC 

This integrates (31) and (32) with (36) and (37) as boundary 

At t = 0, it calculates i i conditions, and prints values of Vxk, Vkk. 

6k according to (58). 

5. START 

This short  routine accepts input information. The input must  

include the maximum number of iterations, the number of t ime steps,  

the tolerances ETA, ETAl,  ETA2, CK, and TOL, the initial value 

of z, and the initial nominal control history. 

6 .  BETA 

The optimal perturbation feedback law for  smal l  deviations 

from a n  optimal trajectory is given by (22), which, in  the present 

problem, may be approximated by, 

-1. 
= -H*' f'[vit16xi t Vit16k] . 

1 uu u xx xk 

T F r o m  (58), and since Vi = 8 = 0 on a n  optimal trajectory,  k 

~ 

t o r  f rom ( 6 8 ) ,  6Vi - 6V X 0. 
0 '  
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To f i rs t -order  in At (in a problem which originates from a 

continuous problem). this may be written 

See section IV. 1. 

Thus, 

.-1 i t 1  i t 1  i t 1 - l  i t 1  
6u. 1 = -H:U fU[Vxx - Vxk Vkk vkx Isxi 

1' The coefficient of 6xi is calculated in  BETA, and printed as p 

P,, P,. 
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